
 Incremental Mining of Association Rules: A Survey
Siddharth Shah* ,N. C. Chauhan#,S. D. Bhanderi#

*B.V.M.Engineering College, V.V.Nagar, Gujarat, India
#A.D.Patel Institute of Technology, New V.V.Nagar, Gujarat, India

Abstract-The association rule mining has been very useful
in many applications such as, market analysis, web data
analysis, decision making, knowing customer trends etc. In
transactional databases as time advances, new transactions
are being added and obsolete transactions are discarded.
Incremental mining deals with generating association rules
based on available knowledge (obtained from mining of
previously stored databases) and incremented databases
only, without scanning the previously mined databases
again. Several research works have been carried out for
deriving the association rules and maintaining them
efficiently without re-scanning the complete database. In
this paper, a survey on different algorithms designed for
incremental mining is presented. The algorithms are
discussed into two sub-categories namely, apriori based
algorithms and tree based algorithms. The pros and cons
of these algorithms are also discussed in brief.

1. INTRODUCTION
Due to the increasing use of large data with high
computation required for various applications, the
importance of data mining has grown rapidly. From the
point of view of business application, analysis of
previous transaction data can provide valuable
information on behavior of customer, and thus help in
making business decisions. Thus it is necessary to
collect and analyze a sufficient data properly before
making any decisions. Since the amount of data being

processed is large, it is important for the mining
algorithms to be very computationally efficient. Various
data mining algorithms have been explored in the
literature [1–6]. Recently many important applications
have created the need of incremental mining. This is due
to the increasing use of the record-based databases
where data is being continuously added e.g., super
market data, stock market data, sales data, and
weather/traffic records, etc. In the incremental mining,
data are not only added but also obsolete data are being
deleted. The aim of incremental mining techniques is to
re-run the mining algorithm on the only updated
database. The overall process of incremental mining is
summarized in Fig. 1. However, it is obviously less
efficient since previous mining rules are not utilized for
discovering new rules while the updated portion is
usually small compared to the whole dataset.
Consequently, the efficiency and the effectiveness of
algorithms for incremental mining are both crucial
issues. Algorithms should be such that only updated
transactions and previous mined rules to be taken into
account for generating new rules. In the next section
various algorithms designed for incremental mining
have been discussed. The most of algorithms have been
classified into majorly two categories: Apriori based
algorithms, and Tree based algorithms

‘

Fig 1: Process of incremental mining[19]
.

Original

Database

Original

Patterns/Rules

Incremental

Database

Incremental

Mining

Updated

Patterns/Rules

Association

Rule Mining

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4071-4074

4071

2. APRIORI-BASED INCREMENTAL MINING

ALGORITHMS

2.1 FUP Algorithm and Its Variations
Algorithm FUP (Fast UPdate) [7] is the first algorithm
proposed for incremental mining of association rules. It
deals with databases with transaction insertion only, but
is not able to solve the same with transaction deletion.
Specifically, given the original database D and its
corresponding frequent itemsets L = {L1, ..., Lk}. the
algorithm reuses the information to efficiently obtain
the new frequent itemsets L’ = {L’i, ..., L’k} on the new

database D’ = D ∪ D+. Here, D is the original database,

∆+ are the transactions added, ∆– are transactions
deleted, D– is set of transactions left after deletion and
D’ is incremented database. By utilizing the definition
of support and the constraint of minimum support Smin.
The following lemmas are generally used in algorithm
FUP.

1. An original frequent itemset X, i.e., X ∈ L, becomes

infrequent in D’ if and only if X.supportD’ < Smin.

2. An original infrequent itemset X, i.e., X /∈ L, may

become frequent in D0 only if X.support∆+ ≥ Smin.
3. If a k-itemset X whose (k-1)-subset(s) becomes

infrequent, i.e., the subset is in Lk−1 but not in
L’k−1, X must be infrequent in D’.

FUP can update the association rules in a database when
new transactions are added to the database, contains a
number of iterations [13, 14]. The candidate sets at each
iterations are generated based on the frequent itemsets
found in the previous iteration. At the k-th iteration of
FUP, ∆+ is scanned exactly once. For the original
frequent itemsets, they only have to be checked against
the small increment ∆+. To discover the new frequent
itemsets, the set of candidate itemsets Ck is firstly
extracted from D+, and then be pruned according to the
support count of each candidate itemset in ∆+.
Moreover, the pool for candidate itemsets can be further
reduced by discarding itemsets whose (k–1)-subsets are
becoming infrequent.
Cheung, et. al. [8] proposed a new algorithm FUP2

which is an extension of FUP algorithm. The FUP
updates the association rules in a database when new
transactions are added to the database whereas FUP2
updates the existing association rules when transactions
are added to and deleted from the database. FUP2 is
similar to FUP for the case of insertion, and is, however,
a complementary algorithm of FUP for the case of
deletion. A very feature is that the old frequent k
itemsets Lk from the previous mining result is used for
dividing the candidate set Ck into two parts: Pk = Ck ∩Lk
and Qk = Ck − Pk. In other words, Pk and Qk are the sets
of candidate itemsets that are previously frequent and

infrequent with respect to D. For the candidate itemsets
in Qk, their supports are unknown since they were
infrequent in the original database D, posing some
difficulties in generating new frequent itemsets. It is
noted that if a candidate itemset in Qk is frequent in Δ–,
it must be infrequent in D–. This itemset is further
identified to be infrequent in the updated database D’ if
it is also infrequent in Δ+. This technique helps on
effectively reducing the number of candidate itemsets to
be further checked against the unchanged portion D–
which is usually much larger than Δ– or Δ+.

2.2 UWEP (Update With Early Pruning)
In [9], algorithm UWEP has been proposed which uses
the technique of update with early pruning. The
advantage of algorithm UWEP over other FUP-based
algorithms is that it prunes the supersets of an originally
frequent itemset in D as soon as it becomes infrequent
in the updated database D’, rather than waiting until the
k-th iteration. In addition, only itemsets which are

frequent in both Δ+ and D’= (D ∪ Δ+) are taken to

generate candidate itemsets to be further checked
against Δ+. If a k-itemset is frequent in Δ+, but
infrequent in D’, it is not considered when generating
Ck+1. This significantly reduces the number of candidate
itemsets in Δ+. Consequently, these early pruning
techniques can enhance the efficiency of FUP-based
algorithms.

2.3 Algorithm Utilizing Negative Borders
The concept of negative borders [10] has been utilized
in [11] to improve the efficiency of FUP-based
algorithms on incremental mining. Given a collection of
frequent itemsets L, the negative border Bd−(L) of L

consists of the minimal itemsets X ⊆ R not in L where R

is the set of all items. In other words, the negative
border consists of all itemsets that were candidates of
the level-wise method which did not have enough
support. That is, Bd−(Lk) = Ck – Lk where Bd−(Lk) is the
set of k-itemsets in Bd−(L). The intuition behind the
concept is that given a collection of frequent itemsets,
the negative border contains the "closest" itemsets that
could be frequent, too.
The algorithm proposed in [11] first generate the
frequent itemsets of the increment portion Δ+. A full
scan of the whole dataset is required only if an itemset
outside the negative border gets added to the frequent
itemsets or its negative border. Even in such cases, it
requires only one scan over the whole dataset. The
drawback is that to compute the negative border closure
may increase the size of the candidate set. However, a
majority of those itemsets would have been present in
the original negative border or frequent itemset. Only
those itemsets which were not covered by the negative
border need to be checked against the whole dataset. As

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4071-4074

4072

a result, the size of the candidate set in the final scan
could be much smaller as compared to algorithm FUP.

2.4 MAAP (Maintaining Association rules with

Apriori Property) and PELICAN
Several other algorithms, including the MAAP
algorithm [12], and the PELICAN algorithm [13], are
proposed to perform incremental mining. Algorithm
MAAP firstly finds the frequent itemset(s) of the largest
size based on previously discovered frequent itemsets. If
a k-itemset is found to be frequent, then all of its subsets
are also frequent and are thus added to the new set of
frequent itemsets L’. This eliminates the need to
compute some frequent itemsets of shorter sizes. The
other frequent itemsets are then identified by following
the levelwise itemset generation. Both algorithms
MAAP and PELICAN are similar to algorithm FUP2,
however, their main goal is to maintain maximum
frequent itemsets when the database is updated. The
algorithms do not consider non-maximum frequent
itemsets, and therefore, the counts of non-maximum
frequent itemsets cannot be calculated. The difference
of these two algorithms is that MAAP calculates
maximum frequent itemsets by Apriori-based
framework, while PELICAN calculates maximum
frequent itemsets based on vertical database format and
lattice decomposition. Since these two algorithms
maintain maximum frequent itemsets only, the storage
space and the processing time for performing each
update can be thus reduced.

3. TREE-BASED INCREMENTAL MINING

ALGORITHMS

3.1 DB-tree and PotFp-tree Algorithms
In [14], DB-tree and PotFp-tree have been proposed in
order to achieve incremental mining. The algorithm DB-
tree, stores all the items in an FP-tree rather than only
frequent 1-itemsets in the database. Besides, the
construction of a DB-tree is exactly the same way as
that of a FP-tree. Consequently, the DB-tree can be seen
as an FP-tree with minimum support = 0. When new
transactions are added, corresponding branches of the
DB-tree could be adjusted or new branches may be
created. On the other hand, when old transactions are
deleted, corresponding branches are also adjusted or
removed. This retains the flexibility to accommodate the
FP-tree to database changes when performing
incremental mining. However, since the whole dataset
being considered could be quite large, a much more
space could be needed to maintain this DB-tree structure
even a high compression is made by the nature of tree
projection. This drawback may cause the problem of
insufficient memory even more severe when the size of
the DB-tree is far above the memory capacity. The other

algorithm proposed in [14] is the PotFp-tree, which
stores only some potentially frequent items in addition
to the frequent 1-itemsets at present. A tolerance
parameter t is used to decide if an item is potentially
frequent. Therefore, the need to scan the whole old
database in order to update the FPtree when updates
occur is likely to be effectively reduced. The PotFp-tree
is seeking for the balance of required extra storage and
possibility of re-scanning the dataset. Since FP-tree is a
subset of either the DB-tree or the PotFptree, for mining
frequent itemsets, the FP-tree is firstly projected from
either the DB-tree or the PotFp-tree. The frequent
itemsets are then extracted from the FP-tree in the way
described in [15].

3.2 FELINE (Frequent /Large patterns mining with
CATS tree)
In [16], the CATS tree (compressed and arranged
transaction sequences tree) has been proposed which
has several common properties of FP-tree. Also, the
CATS tree and the DB-tree are very alike since they
both store all the items no matter they are frequent or
not. This feature enables the CATS tree to be capable of
avoiding re-scans of databases when updates occur.
However, the construction of the CATS tree is different
to that of an FP-tree and a DB-tree. Specifically, the FP-
tree is built based on the ordering of global supports of
all frequent items, while the CATS-tree is built based on
the ordering of local supports of items in its path.
Consequently, the CATS-tree is sensitive to the ordering
of input transactions, making the CATS-tree not optimal
since no preliminary analysis is done before the tree
construction. This in turns can reduce the data scan
required to only once, which is the advantage of this
algorithm.

3.3 CAN Tree (Canonical – order Tree)
In [17] a novel tree structure, called CanTree
(Canonical-order Tree) has been proposed which
captures the content of the transaction database and
orders tree nodes according to some canonical order.
The construction of the CanTree only requires one
database scan as compared to an FP-tree which requires
two database scans. In CanTree, items are arranged
according to some canonical order, which can be
determined at runtime during the mining process.
Specifically, items can be arranged in lexicographic
order or, items can also be arranged according to some
specific order depending on the item properties (e.g.,
price, validity, etc.) which are frequency independent
ordering. Items can also be arranged according to some
fixed frequency-related ordering (e.g., in descending
order of the global frequency of the “original” database
DB). Once the ordering is determined, items will follow
this ordering in CanTrees for subsequently updated
database even the frequency ordering of items in these

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4071-4074

4073

updated databases is different from DB. With this
canonical ordering of items, some properties [17], are
described below.
Property 1) The ordering of items is unaffected by the
changes in frequency caused by incremental
updates.Property 2) The frequency of a node in the
CanTree is at least as high as the sum of frequencies of
its children.Now with these properties of CanTree,
transactions can be easily added to the CanTree without
searching for merge-able paths. As canonical order is
fixed, any changes in frequency caused by incremental
updates (e.g., insertions, deletions, and/or modifications
of transactions) will not affect the ordering of items in
the CanTree at all. Also, swapping of tree nodes which
often leads to merging and splitting of tree nodes is not
required. Once the CanTree is constructed, mining
frequent patterns from the tree is similar to FP-growth.
Since items are consistently arranged according to some
canonical order, the inclusion of all frequent items using
just upward traversals is guaranteed. There is no worry
about possible omission or doubly-counting of items.
Hence, for CanTrees, there is no need for having both
upward and downward traversals which significantly
reduces computation.

4 DISCUSSIONS
Mining of association rules can provide very valuable
information, and improve the quality of business
decisions. Many incremental mining algorithms have
been proposed by different researchers in accordance
with the need of applications which uses record based
database and where database grows rapidly. The overall
approach towards incremental mining is to make use of
previously mined knowledge and scan only incremented
database. Most of the algorithms try to reduce the
number of scans of database and maintain the
association rules efficiently. Apriori based algorithms
like FUP and FUP2 requires two complete scans of
database and are computationally less efficient due to
candidacy generation. Tree based algorithms, like CAN
tree and FELINE, require only single scan of database.
The FELINE algorithm requires swapping, merging and
splitting of tree nodes, since it uses frequency dependent
ordering and this drawback has been overcome in CAN
tree. FELINE also takes large computation time in
finding merge-able paths and needs downward
traversals during mining. In all, many algorithms have
contributed to achieve incremental mining, however yet
there are scopes to improve the efficiency of algorithms,
development of new algorithms, and to reduce number
of scans of databases.

REFERENCES
1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules

between Sets of Items in Large Databases. Proceedings of the
1993 ACM SIGMOD International Conference on Management of
Data, pages 207—216, May 1993.

2. R. Agrawal and R. Srikant. Mining Sequential Patterns. Proceedings of
the 11th International Conference on Data Engineering, pages 3—14,
March 1995.

3. J. M. Ale and G. Rossi. An Approach to Discovering Temporal
Association Rules. Proceedings of the 2000 ACM Symposium on
Applied Computing, pages 294—300, March 2000.

4. M.-S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from
Database Perspective. IEEE Transactions on Knowledge and Data
Engineering, 8(6):866— 883, December 1996.

5. M.-S. Chen, J.-S. Park, and P. S. Yu. Efficient Data Mining for Path
Traversal Patterns. IEEE Transactions on Knowledge and Data
Engineering, 10(2):209— 221, April 1998.

6. X. Chen and I. Petr. Discovering Temporal Association Rules:
Algorithms, Language and System. Proceedings of the 16th
International Conference on Data Engineering, 2000.

7. D. Cheung, J. Han, V. Ng, and C. Y. Wong. Large Databases: An
Incremental Updating Technique. Proceedings of the 12th
International Conference on Data Engineering, pages 106—114,
February 1996.

8. D. Cheung, S. D. Lee, and B. Kao. A General Incremental Technique for
Updating Discovered Association Rules. Proceedings of the Fifth
International Conference On Database Systems for Advanced
Applications, pages 185—194, April 1997.

9. N. F. Ayan, A. U. Tansel, and M. E. Arkun. An Efficient Algorithm to
Update Large Itemsets with Early Pruning. Proceedings of the 5th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 287—291, August 1999.

10. H. Toivonen. Sampling Large Databases for Association Rules.
Proceedings of the 22th International Conference on Very Large
Data Bases, pages 134—145, September 1996.

11.S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An Efficient
Algorithm for the Incremental Updation of Association Rules in
Large Databases Proceeding of the 3rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 263—
266, August 1997.

12. Z. Zhou and C. I. Ezeife. A Low-Scan Incremental Association Rule
Maintenance Method. Proceedings of the 14th Canadian Conference
on Artificial Intelligence, June 2001.

13. A. Veloso, B. Possas, W. M. Jr., and M. B. de Carvalho. Knowledge
Management in Association Rule Mining. Workshop on Integrating
Data Mining and Knowledge Management (in conjuction with
ICDM2001), November 2001.

14. C. I. Ezeife and Y. Su. Mining Incremental Association Rules with
Generalized FP-Tree. Proceedings of the 15th Canadian Conference
on Artificial Intelligence, May 2002.

15. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate
Generation. Proceedings of the 2000 ACM-SIGMOD International
Conference on Management of Data, May 2000.

16. W. Cheung and O. R. Zaiane. Incremental Mining of Frequent Patterns
without Candidate Generation or Support Constraint. Proceedings of
the 7th International Database Engineering and Application
Symposium, July 2003.

17. C. K. Leung, Q. I. Khan and T. Hoque. CanTree: A Tree Structure for
Efficient Incremental Mining of Frequent Patterns, Proceedings of
the Fifth IEEE International Conference on Data Mining (ICDM’05),
2005.

18. C.-H. Lee, C.-R. Lin, and M.-S. Chen. Sliding-Window Filtering: An
Efficient Algorithm for Incremental Mining. Proceeding of the ACM
10th International Conference on Information and Knowledge
Management, November 2001.

19. V. Pudi. Data Mining: Concepts and Techniques, Oxford University
Press, Jan-2009

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4071-4074

4074

